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Abstract. We study Thomson’s problem using a new numerical algorithm, valid for any
interacting complex system based on the consideration of simultaneous many-particle transitions
to reduce the characteristic slowing down of numerical algorithms when applied to critical or
complex systems. We improve or reproduce all previous results on the Thomson problem, using
much less computer time than the other numerical algorithms. We report ground-state energies
for 1016 N 6 135, and study the stability of the ground state as a function of the number of
charges considered. We associate this stability with how well defined are the charges surrounded
by five nearest neighbours, whose number always seems to be equal to 12.

1. Introduction

The problem of finding the lowest-energy configuration ofN charges distributed over the
surface of a unit sphere has been studied by many authors since it was proposed by Thomson
many years ago [1–6]. In spite of its apparent simplicity, it is a good example of a complex
system, which includes disorder and interactions, with a non-trivial solution. The interest
in the problem is partly due to the increasing importance of the carbon fullerenes [7–10]
and to the ‘magic’ stability numbers exhibited by microclusters [11]. The problem is also
relevant to the calculation of the electronic structure of anions, the difficulty of which is
substantially overcome when they are surrounded by a charged sphere [6].

For systems with few charges, symmetry principles alone may be sufficient for
determining the equilibrium configurations, as was demonstrated exactly by Leech for
N = 2–6, 12 [12]. Many different numerical methods have been applied to finding
the lowest minimum energy configurations. Erber and Hockney [2] obtained results for
N 6 65 by performing single-charge displacements in the direction of the electrostatic
force. Simulated annealing [14] was used by Edmundson [4], who obtained the same
results as Erber and Hockney, except forN = 55 andN = 56 for which only metastables
states were obtained; although, on the other hand, he calculated low-energy configurations
for N = 72, 92 and 100. The same author, using symmetry considerations [5], was able to
calculate very stable configurations for many values ofN up to 100.

The standard Monte Carlo technique allows us to obtain configurations at a given
temperature, with the right probability, but it is inefficient near the critical temperature
of a phase transition, because the correlation length diverges and transitions involve clusters
of many particles [15]. New efficient Monte Carlo methods, based on cluster algorithms,
have been designed to overcome the critical slowing down of phase transitions [16], but
they cannot be applied to disordered systems, including Thomson’s problem. Charges on a
unit sphere also present the problem of slowing down, since to reach the lowest electrostatic
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energy configuration, simultaneous many-particle movements are needed; metastables states
act as energy barriers which lead to slowing down near the ground state.

There are some approaches which use cluster algorithms for spin glasses [17], but
they are of limited efficiency. The main contribution in this field is the method of
constrained global optimization [1], that iteratively uses a Glauber spin-flip probability
and the Metropolis algorithm [13]. This method was applied to Thomson’s problem and
produced the best available results forN 6 100, except forN = 78, where Edmundson’s
results [5], based on symmetry considerations, are better. Very recently, Erber and
Hockney [18] improved the constrained global optimization results forN = 69, 86 and
87.

This paper describes the application of a new numerical algorithm, specially designed
for disordered interacting systems, to Thomson’s problem with high-N values, giving the
best results achieved by any other method forN 6 100 and the ground-state configurations
for N 6 135. Our method consists of choosing a number of low-energy single-particle
transitions, producing all possible combinations and then picking the one with the lowest
energy. This procedure is iterated until there is no further reduction in energy. We also
study the stability of the ground state and analyse the spatial correlations between charges
as a function of the number of charges on the sphere.

2. Description of the numerical algorithm

We considerN charges disposed on the surface of a unit sphere, interacting through their
Coulomb forces. We have to look for the positions of the charges that minimize the total
dimensional electrostatic energy

U =
N∑

i>j

1

|ri − rj | (1)

whereri is the position vector(xi, yi, zi) of the chargei (i = 1, . . . , N), with the constraint
x2

i + y2
i + z2

i = 1. We use Cartesian coordinates, since they are more convenient when
moving the particles in the direction of the forces.

Our method, as applied to Thomson’s problem, consists of the following. We first
choose an arbitrary numbern (we initially taken = 3 initially), which corresponds to the
number of charges that will be considered moving in each step. We also select an initial
angleϑ , through which we will move each chosen charge. Then the following steps are
performed:

(i) Look for the n charges suffering the greatest electrostatic forces and store their
positions in an array. Initially, theN charges considered are placed at random on the unit
sphere.

(ii) Calculate the positions of then charges chosen if they are to be displaced by an
angleϑ in the direction of the corresponding force.

(iii) Using the Gray code (see below), make all possible combined movements (2n) of
the chosen charges and pick up the movement which results in the configuration with the
lowest energy.

(iv) If the previous step reduces the total energy, go back to the first step.
(v) In the opposite case, reduce the angleϑ by a constant factor, which we choose to

be equal to 2. Increase the numbern with an algorithm that takes into account the energy
reduction in the latest iteration and the computer time per iteration, as a function ofn.
Stop the program when the energy difference between the present configuration and the
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configuration we were in the last time we performed this step is smaller than a prefixed
value, which we choose to be equal to 10−10.

(vi) The whole procedure is repeated (usually 100 times) for different initial random
configurations of the charges. The energy of the different metastable or ground states
obtained in each run is stored.

The Gray code was introduced in coding theory in order to minimize the effects of a
single transmission error. A wrong bit in an integer number codified according to this code
only changes the correct number in one unit. Successive integers only differ by one bit [19].
The energies of the 2n combinations of charge movements are calculated sequentially with
the Gray code, so that only one charge is displaced between any two combinations. Thus,
the energy of each combination can be obtained from the energy of the previous one by
adding a term that includes the effects of one sole charge movement.

The number of possible simultaneous transitionsn is a crucial parameter. There is an
optimumn that maximizes the energy reduction per iteration divided by the corresponding
computer time. This optimum number increases as the energy approaches its absolute
minimum. We modifyn dynamically within the program, which helps to reduce the slowing
down speeds up the process of reaching the minimum energy. The optimumn also increases
with the total number of charges considered. We found that the best initial value ofn is 3,
independent of the number of chargesN . The final value ofn obtained with our dynamical
algorithm depends on the particular configuration chosen, and on average is approximately
equal to 9 for systems with a number of charges of the order ofN = 100.

3. Ground-state energy

For N 6 100 we are able to reproduce the better results that have been obtained by any
other methods. In particular, forN = 78 we get the value of the energy obtained by
Edmundson [5], with symmetry arguments that the constrained global optimization method
was unable to find.

In table 1 we show our results for 1016 N 6 135. As Erber and Hockney pointed
out, the number of distinct fairly stable low-energy configurations increases exponentially
with the number of charges considered. Furthermore, the ground state is not necessarily
the most easily reachable configuration, so the algorithm has to be repeated many times for
different initial random configurations, and the speed of the numerical method is a critical
factor. For each initial configuration, our algorithm takes less than 2 minutes forN ∼ 100,
and about 5 minutes forN ∼ 130 in a R8000CPU.

As a measure of the stability of the ground-state configuration, we calculate the
frequency of appearance or ‘capture basin’ of the ground state as the final metastable
stage of our algorithm for different random initial configurations. In figure 1, we show this
frequency as a function of the number of charges on a semilogarithmic plot. We can see
that the frequency tends to zero exponentially, but with very large fluctuations. The straight
line in figure 1 corresponds to the function

f = f0 e−0.056N . (2)

This curve is a good indication of how many different initial configurations must to be
attempted to be reasonably sure of obtaining the ground state. (What we call ground states
here are the smallest energy configurations we reach for eachN . There is no way to be sure
that one has reached the true ground state of the system.) Erber and Hockney [18] found
that the number of metastables states (M) depends on the number of charges in the form

M ∝ e0.0497N . (3)
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Table 1. Minimal-energy values obtained for Thomson’s problem ofN point charges on the
surface of a unit sphere.

N Energy N Energy

101 4540.590 05 119 6364.347 32
102 4633.736 57 120 6474.756 33
103 4727.836 62 121 6586.121 95
104 4822.876 52 122 6698.504 47
105 4919.000 64 123 6811.827 23
106 5015.984 59 124 6926.169 97
107 5113.953 55 125 7041.473 26
108 5212.813 51 126 7157.669 22
109 5312.735 08 127 7274.819 50
110 5413.549 29 128 7393.007 44
111 5515.293 21 129 7512.107 32
112 5618.044 88 130 7632.167 38
113 5721.824 98 131 7753.205 17
114 5826.521 57 132 7875.045 34
115 5932.181 29 133 7998.179 21
116 6038.815 59 134 8122.089 72
117 6146.342 45 135 8246.909 49
118 6254.877 03

Figure 1. Logarithm of the frequency
of occurrence of the ground state as a
function of the number of the charges of
the system.

The similar absolute value of both exponents confirms the hypothesis that the main fac-
tor affecting the frequency of occurrence of the ground state is the number of metastables
states. We have calculated the dependence of the number of metastable states obtained
with our method on the number of charges. We obtained the same exponent as in (3), but
the constant of proportionality is smaller in our case by a factor of 0.8. Thus, the number
of metastable states with respect to only one-electron transitions is about one quarter the
number of metastable states with respect to more than one-electron transitions.
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Figure 2. Pair distribution function versus distance for the ground
state forN = 126 andN = 132.

4. Nearest-neighbour distribution

We study the pair distribution function (PDF) for a different number of charges. We found
that in the ground state, when charges are disposed on their minimal-energy positions, the
PDF presents both very pronounced peaks and forbidden distances. Even in the low-energy
metastable state, the peaks and the gaps in thePDF are quickly smoothed out. The figure
of the PDF in [3] is similar to our results for the metastable state considered. Thus we
conclude that in the true ground state thePDF is more similar to that of a crystal than the
results previously reported, at least for most values ofN .

In figure 2 we show thePDF for N = 126 and forN = 132 which are very unstable
and very stable systems, respectively. In both cases, the first peak corresponds to nearest-
neighbour charges. The number of nearest-neighbour pairs can be counted, for most values
of N . We plotted the spatial charge distribution and checked that the charges have either six
or five nearest-neighbour charges. So, the number of charges with five nearest neighbours
can be deduced from the total number of nearest-neighbour pairs. We found that all the
ground-state configurations, forN > 100 have 12 charges with five nearest neighbours.
Furthermore, we checked that these 12 charges are roughly arranged at the corners of an
icosahedron, and their positions are extremely similar to those of a system of 12 charges on
a sphere. When the ground state is very stable, the charges with five nearest neighbours are
very well defined, meaning that the distance of all of them to their nearest neighbours are
all practically the same, and so the first peak in thePDF is very sharp, as forN = 132 in
figure 2. On the other hand, ground states with ill-defined nearest neighbours are difficult
to reach, as forN = 126 in figure 2.

We also try to obtain correlations between the stability of the ground state and
fluctuations in the total energy of the system, but with no success. The total energy of
the system is roughly proportional toN2 and presents extremely small fluctuations around
this global tendency, which we believe is due to the long-range character of the interaction.
The nearest-neighbour distribution (either distances or angles) is clearly the most sensitive
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tool to study the ground-state stability.

5. Conclusions

We found that our many-particle jumps energy minimization technique is especially suited
to Thomson’s problem. We calculated the ground-state configurations forN < 136 and
found that the charges arrange themselves on a triangular lattice with some ‘defects’, which
correspond to charges surrounded by only five nearest neighbours. The number of defects is
equal to 12 forN > 100 and these occupied the corners of an icosahedron, which constitutes
an extremely stable configuration. The ground state for a given number of charges is very
stable when its first peak in thePDF is well defined and vice versa.
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